On the Robust Parameter Estimation for Linear Model with Autocorrelated Errors
نویسندگان
چکیده
منابع مشابه
Minimax Regression Designs for Approximately Linear Models with Autocorrelated Errors
We study the construction of regression designs, when the random errors are autocorrelated. Our model of dependence assumes that the spectral density g(~o) of the error process is of the form g ( o ) = (1 -a)go(~O ) + ~gl(o), where go(CO) is uniform (corresponding to uncorrelated errors), ct ~ [0, 1) is fixed, and gx(to) is arbitrary. We consider regression responses which are exactly, or only ...
متن کاملRobust parameter estimation for mixture model
In pattern recognition, when the ratio of the number of training samples to the dimensionality is small, parameter estimates become highly variable, causing the deterioration of classification performance. This problem has become more prevalent in remote sensing with the emergence of a new generation of sensors with as many as several hundred spectral bands. While the new sensor technology prov...
متن کاملMore Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic distribution of our estimator under weak dependence conditions. It is shown that the proposed estimation...
متن کاملThe Linear Regression Model with Autocorrelated Errors: Just Say No to Error Autocorrelation
This paper focuses on the practice of serial correlation correcting of the Linear Regression Model (LRM) by modeling the error. Simple Monte Carlo experiments are used to demonstrate the following points regarding this practice. First, the common factor restrictions implicitly imposed on the temporal structure of yt and xt appear to be completely unreasonable for any real world application. Sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Science Letters
سال: 2013
ISSN: 1936-6612,1936-7317
DOI: 10.1166/asl.2013.4945